Listado de Referencias para el documento "Visión"

  1. Lewis, N. S. Toward cost-effective solar energy use. Science 315, 798-801, DOI (2007).
  2. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 6050-6051, DOI (2009).
  3. Park, N.-G., Grätzel, M., Miyasaka, T., Zhu, K. & Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 1, 16152 DOI (2016).
  4. Best Research Cell Efficiencies NREL
  5. Yu, H. J. J. & Geoffron, P. in Photovoltaic Solar Energy Conversion (eds Shiva Gorjian & Ashish Shukla) 413-437 (Academic Press, 2020).
  6. Green, M. A. How Did Solar Cells Get So Cheap? Joule 3, 631-633, DOI (2019).
  9. Juarez-Perez, E. J. & Haro, M. Perovskite solar cells take a step forward. Science 368, 1309-1309, DOI (2020).
  10. Khenkin, M. V., Katz, E. A. & others. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy 5, 35-49, DOI (2020).
  11. Wang, S., Jiang, Y., Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2, 16195, DOI (2017).
  12. Juarez-Perez, E. J., Hawash, Z., R. Raga, S., Ono, L. K. & Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry - mass spectrometry analysis. Energy Environ. Sci. 9, 3406-3410, DOI (2016).
  13. Juarez-Perez, E. J. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604-9612, DOI (2018).
  14. Juarez-Perez, E. J., Ono, L. K. & Qi, Y. Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry - mass spectrometry analysis. J. Mater. Chem. A 7, 16912-16919, DOI (2019).
  15. Juarez-Perez, E. J., Ono, L. K., Uriarte, I., Cocinero, E. J. & Qi, Y. Degradation Mechanism and Relative Stability of Methylammonium Halide Based Perovskites Analyzed on the Basis of Acid-Base Theory. ACS Appl. Mater. Interfaces 11, 12586-12593, DOI (2019).
  16. Juarez-Perez, E. J. Comment on “Probing the Origins of Photodegradation in OrganicInorganic Metal Halide Perovskites with Time-Resolved Mass Spectrometry”, Sustainable Energy & Fuels, 2018. Updated response (March 14, 2019) DOI (2019).
  17. Islam, M. B., Yanagida, M., Shirai, Y., Nabetani, Y. & Miyano, K. Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h. Sol. Energy Mater. Sol. Cells 195, 323-329, DOI (2019).
  18. Bisquert, J. & Juarez-Perez, E. J. The Causes of Degradation of Perovskite Solar Cells. J. Phys. Chem. Lett. 10, 5889-5891, DOI (2019).
  19. Grancini, G. et al. One-Year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 DOI (2017).
  20. Tombe, S. et al. The influence of perovskite precursor composition on the morphology and photovoltaic performance of mixed halide MAPbI3-xClxsolar cells. Solar Energy 163, 215-223, DOI (2018).
  21. Dunfield, S. P. et al. From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Adv. Energy Mater. 10, 1904054, DOI (2020).
  22. Juarez-Perez, E. J., Momblona, C., Casas, R. & Haro, M. Enhanced Power Point Tracking for High Hysteresis Perovskite Solar Cells: A Galvanostatic Approach. arXiv, DOI (2023).
  23. Juarez-Perez, E. J., Momblona, C., Casas, R. & Haro, M. Enhanced power-point tracking for high-hysteresis perovskite solar cells with a galvanostatic approach. Cell Reports Physical Science 5, 101885 DOI (2024).
  26. López Prol, J., Steininger, K. W. & Zilberman, D. The cannibalization effect of wind and solar in the California wholesale electricity market. Energy Economics 85, 104552, DOI (2020).
  27. Peña, J. I., Rodríguez, R. & Mayoral, S. Cannibalization, depredation, and market remuneration of power plants. Energy Policy 167, 113086, DOI (2022).
  28. Ciria-Ramos, I., Juarez-Perez, E. J. & Haro, M. Solar Energy Storage Using a Cu2O-TiO2 Photocathode in a Lithium Battery. Small, 2301244, DOI (2023).
  29. Ciria-Ramos, I. et al. Electrochemical Performance of M(dca)2pyz (M= Fe, Co, and Ni) MOFs as Sustainable Anodes in Lithium-Ion Batteries. J. Mater. Chem.A, DOI (2024).